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The story till now...

Semantic entailment: ¢ = ¥
Are all models of formula ¢ also models of ¥ ?

®If

— |, the formula ¢ is unsatisfiable

® We are interested in procedures for determining this
relationship

Approach 1: search for a proof that uses the rules of
natural deduction

® Natural deduction provides “natural” proofs, i.e. short
arguments such as humans would give; however, such
proofs can be hard to find by a computer




The story till now...

Approach 2: employ the rules of resolution
® Notethat p =9 iff p A =1

® We first normalize formulas ¢ and —) in conjunctive

normal form (giving ¢’ and ¢/ )

® Then we repeatedly apply the resolution rule on ¢’ A v’
till we either cannot derive new clauses or we derive |

® If we derive _| by means of resolution, it can be shown that
the formula is unsatisfiable

® Otherwise, it is satisfiable




The story till now...
Example of resolution
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In the general case, the repeated application of
resolution can yield an exponential number of
clauses...

® We would prefer not to store and generate all of these




The story till now...

@ Resolution can be applied efficiently on definite
clauses, by means of the forward chaining algorithm

This algorithm is complete for facts: any fact that is entailed,
will be derived.




The story continues

Can we use the ideas of forward chaining and
resolution in a more efficient algorithm?




-

_ Deciding satisfiability of CNF
formulas: DPLL

The DPLL algorithm for deciding satisfiability was
proposed by Davis, Putman, Logeman and Loveland
(1960, 1962)

General ideas:

® we perform depth-first over the space of all possible
valuations

® based on a partial valuation, we simplify the formula
to remove redundant literals

® based on the formula, we fix the valuation of as many
atoms as possible




DPLL: Simplification

If the valuation of atom p is “true”
® every clause in which literal p occurs, is removed

® from every clause in which p is negated, —p is removed

{p=true},(pVq)A(qV—-r)={p=true}, (q¢V )
{p=true}, (—pVq)A(qV —r)={p=true},(gA(qV -T))

similar to resolution

Similarly, if the valuation of atom p is “false”

® every clause in which literal —p occurs, is removed

® from every clause in which p occurs, literal p is removed




DPLL: Simplification

Special case 1 of simplification is when an em
is obtained, i.e. the clause |

pty clause

{p=true},pA(gVr) = {p=true},

LA (g V)

= {p=true},

® in this case the current valuation can never be
to a valuation that satisfies the formula

extended

Special case 2 of simplification is when the empty CNF

formula is obtained, i.e. the formula T

{p=false}, =p = {p = false}, T

® in this case we have found a satistying valuation




DPLL: Fixing pure symbols

If an atom always has the same sign in a formula (i.e.,
the literals p and —p do not occur at the same time),
the atom is called pure. We fix the valuation of a pure
atom to the value indicated by this sign

D,(pVaq)A(pV-r)={p=true},(pVq) A(pV-r)

D,(=pV @) A (mpV-r)={p= false},(=pV q) A (—pV —r)

® Note: we can apply simplification afterwards and
remove redundant clauses




DPLL: Fixing unit clauses

If a clause consists of only one literal (positive or
negative), this clause is called a unit clause. We fix the
valuation of an atom occurring in a unit clause to the
value indicated by the sign of the literal.

D,pA(gVr)={p=truet,pA(qVr)

Also here, we apply simplification afterwards; after
simplification, we may have new unit clauses, which we
can use again; this process is called unit propagation

D,pA(=pVr)
= {p=truel,p A (-pVr)
= {p = true},r = {p = true,r = true},r




DPLL Algorithm

Branching




Optimizations of DPLL

Component analysis: if the clauses can be
partitioned such that variables are not shared
between clauses in different partitions, we solve the
partitions independently

(PV @) AN(=p)A(rVs)AT

2N J
= ~ s

component 1 component 2

Value and variable ordering: when choosing the
next atom to fix, try to be clever (i.e. pick one that
occurs in many clauses)




Optimizations of DPLL

Clause learning: if a contradiction is found, try to
find out which assignments caused this contradiction,
and add a clause (entailed by the original CNF

formula) to avoid this combination of assignments in
the future

Example
(pVr)A(gVT)A(—pV =gV —rV —t)
A(—r VE)A(rV —t)A(—-rV —t)

Note: no unit propagation or pure literals present,
branching necessary.




Optimizations of DPLL

(pVr)AN@QVT)AN(=pV gV rVE)A(rVE)A(rV—t)A(—rV —t)
No propagation possible, branch with p=true
(qVr)AN(=qgVrVE)A(—rVE) AV —t)A(—rV-t)

No propagation possible, branch with g=true

(rVE)AN(-r VE)A(rV—t)A(-rV —t)

No propagation possible, branch with r=true
t N\t

Conflict found in t = apply resolution on t for the original
versions of conflicting clauses (—r V) A (—r Vv —it)

— clause — 7 is entailed by the original formula, add =7

as learned clause to original formula = apply propagation on
this formula new — p=true, g=true, r=false — search stops




Optimizations of DPLL

Random restarts: if the search is unsuccesstul too
long, stop the search, and start from scratch with
learned clauses (and possibly a different
variable/value ordering)

Clever indexing: use heavily optimized data
structures for storing clauses, atoms, and lists of
clauses in which atoms occur

Portfolios: run several different solvers for a short
time; use data gathered from these runs to select the
final solver to execute




Applications of

SAT solvers
Model checking

Planning
Scheduling

Experiment design

Protocol design (networks)

Multi-agent systems
E-commerce
Software package management

Learning automata

http://www.youtube.com/watch?v=0gt503wK7AlI


http://www.youtube.com/watch?v=0gt503wK7AI

Progress in SAT solvers

CPU Time (in seconds)
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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Limmat 02 ¥
Zchaff 02 &
Berkmin 561 02 2
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

100

Number of problems solved
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