
PROPOSITIONAL LOGIC (3)

based on

Huth & Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004

Russell & Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

The story till now...
Semantic entailment:

Are all models of formula also models of ?
If , the formula is unsatisfiable
We are interested in procedures for determining this

relationship
Approach 1: search for a proof that uses the rules of

natural deduction
Natural deduction provides “natural” proofs, i.e. short

arguments such as humans would give; however, such
proofs can be hard to find by a computer

The story till now...
Approach 2: employ the rules of resolution

Note that iff
We first normalize formulas and in conjunctive

normal form (giving and)
Then we repeatedly apply the resolution rule on

till we either cannot derive new clauses or we derive
 If we derive by means of resolution, it can be shown that

the formula is unsatisfiable
 Otherwise, it is satisfiable

The story till now...
Example of resolution

In the general case, the repeated application of
resolution can yield an exponential number of
clauses...
We would prefer not to store and generate all of these

The story till now...
Resolution can be applied efficiently on definite

clauses, by means of the forward chaining algorithm
C = initial set of definite clauses
repeat

if there is a clause p1,...,pn q→ in C where p1,...,pn are
facts in C then
add fact q to C

end if
until no fact could be added
return all facts in C

Resolution

This algorithm is complete for facts: any fact that is entailed,
will be derived.

The story continues
Can we use the ideas of forward chaining and

resolution in a more efficient algorithm?

Deciding satisfiability of CNF
formulas: DPLL
The DPLL algorithm for deciding satisfiability was

proposed by Davis, Putman, Logeman and Loveland
(1960, 1962)

General ideas:
we perform depth-first over the space of all possible

valuations
based on a partial valuation, we simplify the formula

to remove redundant literals
based on the formula, we fix the valuation of as many

atoms as possible

DPLL: Simplification
If the valuation of atom p is “true”

every clause in which literal p occurs, is removed
from every clause in which p is negated, is removed

Similarly, if the valuation of atom p is “false”
every clause in which literal occurs, is removed
from every clause in which p occurs, literal p is removed

similar to resolution

DPLL: Simplification
Special case 1 of simplification is when an empty clause

is obtained, i.e. the clause

in this case the current valuation can never be extended
to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF
formula is obtained, i.e. the formula

in this case we have found a satisfying valuation

DPLL: Fixing pure symbols
If an atom always has the same sign in a formula (i.e.,

the literals p and do not occur at the same time),
the atom is called pure. We fix the valuation of a pure
atom to the value indicated by this sign

Note: we can apply simplification afterwards and
remove redundant clauses

DPLL: Fixing unit clauses
If a clause consists of only one literal (positive or

negative), this clause is called a unit clause. We fix the
valuation of an atom occurring in a unit clause to the
value indicated by the sign of the literal.

Also here, we apply simplification afterwards; after
simplification, we may have new unit clauses, which we
can use again; this process is called unit propagation

DPLL Algorithm

DPLL (valuations V, formula φ)
φ' = simplification of φ based on V
if φ' is an empty formula then return true
if φ' contains the empty clause then return false
if φ' contains a pure atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
if φ' contains a unit clause for atom p with sign v then

return DPLL(V ∪ {p=v}, φ')
let p be an arbitrary atom occurring in φ'
if DPLL(V ∪ {p=true}, φ') then return true
else return DPLL(V ∪ {p=false}, φ')

Branching

Optimizations of DPLL
Component analysis: if the clauses can be

partitioned such that variables are not shared
between clauses in different partitions, we solve the
partitions independently

Value and variable ordering: when choosing the
next atom to fix, try to be clever (i.e. pick one that
occurs in many clauses)

component 1 component 2

Optimizations of DPLL
Clause learning: if a contradiction is found, try to

find out which assignments caused this contradiction,
and add a clause (entailed by the original CNF
formula) to avoid this combination of assignments in
the future

Example

Note: no unit propagation or pure literals present,
branching necessary.

Optimizations of DPLL

No propagation possible, branch with p=true

No propagation possible, branch with q=true

No propagation possible, branch with r=true

Conflict found in t apply resolution on → t for the original
versions of conflicting clauses

 → clause is entailed by the original formula, add
as learned clause to original formula apply propagation on →
this formula new → p=true, q=true, r=false → search stops

Optimizations of DPLL

Random restarts: if the search is unsuccessful too
long, stop the search, and start from scratch with
learned clauses (and possibly a different
variable/value ordering)

Clever indexing: use heavily optimized data
structures for storing clauses, atoms, and lists of
clauses in which atoms occur

Portfolios: run several different solvers for a short
time; use data gathered from these runs to select the
final solver to execute

Applications of
SAT solvers
Model checking
Planning
Scheduling
Experiment design
Protocol design (networks)
Multi-agent systems
E-commerce
Software package management
Learning automata
...

http://www.youtube.com/watch?v=0gt503wK7AI

http://www.youtube.com/watch?v=0gt503wK7AI

Progress in SAT solvers

	Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

